Motion Control Tutorial – Slotted vs. Slotless Motor Technology

motion control Servo2Go-Logo

When first introduced, brushless DC motors, despite their many advantages, were cast as a costly alternative to brush-commutated motors and were typically only specified for low-power applications where long life was the primary desired requirement. Without the mechanical brush-commutator mechanism that would wear and eventually result in motor failure, brushless motors could be relied upon to deliver performance over time. As for other advantages, conventional wisdom held that brushless motors provide high speed and fast acceleration, generate less audible noise and electromagnetic interference, and require low maintenance. Brush-commutated motors, on the other hand, would afford smooth operation and greater economy. In the past decade, though, brushless motors have gained broader appeal and greater acceptance in industry for a wider range of applications previously dominated by brush-commutated products, due in part to dramatic reductions in the cost and size of electronic components and advances in motor design and manufacturing.

At the same time, manufacturers have further sought to challenge conventional wisdom by improving brushless motor design in an effort to combine the traditional advantages of brush-commutated and brushless types. A noteworthy example of how far these innovations have progressed involves the slotless (instead of slotted) construction of the brushless motor’s stationary member, or stator.

The slotless stator design originated with the goal to deliver smooth running performance and eliminate cogging, which is an unwanted characteristic especially in slower-running applications (less than 500 rpm). The absence of cogging is, in fact, the most-often cited reason for selecting a slotless brushless motor.

Slotted Motor Construction

Most brushless motors (slotted or slotless) use electronic commutation, usually Hall-effect sensors and magnets, in place of brushes. The motor’s rotor consists of a steel shaft with permanent magnets or a magnetic ring fixed around the circumference of the shaft. The magnets are responsible for producing torque. As the flux density of the magnet material increases, the amount of torque available from the rotor assembly increases.

In traditional slotted brushless motors, the stator features a group of slotted steel laminations (0.004 in. to 0.025 in. thick), which are fused to form a solid uniform stack and create a series of teeth. Wound copper coils, which produce electromagnetic fields, are then inserted into each of the slots. Together, the laminated stack and wound copper coil form the stator assembly. The return path completing the magnetic circuit consists of the laminated material outboard of the copper windings in the stator and the motor housing.

These brushless slotted motors are especially powerful, because the teeth around which the copper wire is wound place the iron closer to the magnets, so the magnetic circuit is completed more efficiently. As the air gap between iron and magnets is reduced, the torque available for the motor is increased.

However, slotted stators are known to cause cogging, which is attributed to the teeth in their construction. Cogging occurs when the permanent magnets on the rotor seek a preferred alignment with the slots of the stator. Winding copper wires through the slots tends to increase this effect. As magnets pass by the teeth, they have a greater attraction to the iron at the ends of the teeth than to the air gaps between them. This uneven magnetic pull causes the cogging, which ultimately contributes to torque ripple, efficiency loss, motor vibration, and noise, as well as preventing smooth motor operation at slow speeds. A slotless stator offered a solution to the problems experienced with cogging in slotted brushless DC motors.

Advantage of the BLDC Slotted Motor Technology

The main advantages of the slotted technology are:

  • ease of winding customization
  • increased heat dissipation
  • ability to withstand high peak torque
  • high power density

Slotted Motor Applications

The Slotted Motor is ideal for applications such as:

  • Medical Hand Tools
  • Hand held shaver system for arthroscopic surgeries
  • High speed surgical drills for ENT surgeries

Slotless Motor Construction

Instead of winding copper wires through slots in a laminated steel stack as in conventional slotted brushless motors, slotless motor wires are wound into a cylindrical shape and are encapsulated in a hightemperature epoxy resin to maintain their orientation with respect to the stator laminations and housing assembly. This configuration, which replaces the stator teeth, eliminates cogging altogether and results in desired quiet operation and smooth performance.

The slotless design also reduces damping losses related to eddy currents. These currents are weaker in a slotless motor, because the distance between the laminated iron and magnets is greater than in a slotted motor.

Slotless motors are typically designed with sinusoidal torque output that produces negligible distortion, rather then a trapezoidal voltage output. The sinusoidal output reduces torque ripple, especially when used with a sinusoidal driver. Because the slotless design has no stator teeth to interact with the permanent magnets, the motor does not generate detent torque. In addition, low magnetic saturation allows the motor to operate at several times its rated power for short intervals without perceptible torque roll-off at higher power levels.

Compared with slotted motors, slotless construction also can significantly reduce inductance to improve current bandwidth. The teeth in a slotted motor naturally cause more inductance: the coils of copper wire around the teeth interact with the iron in a slotted motor, and this interaction tends to send the current back on itself, resulting in more damping (or dragging) and impacting negatively on slotted motor response and acceleration.

In terms of delivering power, conventional slotted motors used to enjoy the advantage over slotless types, due (as noted) to the proximity of iron and magnets and the reduced air gap.

However, this advantage has virtually evaporated, in large part due to the utilization of high-energy, rare-earch magnets (such as samarium cobalt and neodymium iron boron). By incorporating these magnets, manufacturers of slotless brushless motors have been able to routinely compensate for the greater air-gap distance. These more powerful magnets effectively enable the same (or better) torque performance for slotless products compared with slotted. Eliminating the teeth and using stronger magnets both serve to maximize the strength of the electromagnetic field for optimum power output. Rare-earth magnets, along with the fact that fewer coils, or “turns,” of the wire are required in slotless motors, also help contribute to low electrical resistance, low winding inductance, low static friction, and high thermal efficiency in slotless motor types.

One more important difference between slotless and slotted designs is the rotor diameter. Slotless motors have a larger rotor diameter than slotted construction for the same outside motor diameter and will generate a higher inertia, as well as accommodating more magnet material for greater torque. For applications with high-inertia loads, the slotless product is more likely to be specified.

Slotless Motor Applications

In general, brushless motors are usually selected over brushcommutated motors for their extended motor life. (While motor life is application-specific, 10,000 hours are usually specified.) Other reasons for specifying brushless motors include a wide speed range, higher continuous torque capability, faster acceleration, and low maintenance.

In particular, slotless versions of brushless DC motors will suit those applications that require precise positioning and smooth operation. Typical niches for these motors include computer peripherals, mass storage systems, test and measurement equipment, and medical and clean-room equipment.

As examples, designers of medical equipment can utilize slotless motors for precise control in machines that meter and pump fluids into delicate areas, such as eyes. In medical imaging equipment, slotless brushless DC motors decrease banding by providing the smoother operation at low speeds. Airplane controls supply smoother feedback to pilots. And, by eliminating cogging and resulting vibration, these motors can reduce ergonomic problems associated with hand-held production tools. Other appropriate applications include scanners, robots for library data storage, laser beam reflector rotation and radar antenna rotation equipment, among many others./span)

Customization Options

Slotless brushless DC motors, as with most motors today, feature a modular design so they can be customized to meet specific performance requirements. As examples, planetary or spur gearheads can be integrated on motors for an application’s specific torque and cost requirements. Planetary gearheads offer a higher-torque alternative. Slotless motors can further be customized with optical encoders, which provide accurate position, velocity, and direction feedback that greatly enhances motor control and allows the motors to be utilized in a wider range of applications. As a low-cost alternative to optical encoders, rotor position indicators (ie. Hall Sensors) can be specified.

When using optical encoders, differential line drivers can be utilized to eliminate the effects of electrically noisy environments. Differential line drivers are designed to ensure uncorrupted position feedback from the encoder to the control circuit.

Motor Selection Guided by Application

Despite the overall design and performance comparisons reviewed here for slotless and slotted brushless DC motor types, one should remain cautious in drawing any conclusion that one type is the ultimate choice over the other. There are simply too many variables that must be evaluated, ranging from rotor size and windings to housing and special components. A given application and its requirements should (and will) be the guiding factors in selecting a particular motor type and the customized components to be incorporated.

Some encouraging news in those applications that would clearly benefit from a slotless brushless motor is that costs are coming down to be more in line with those for slotted motors. This is because of new streamlined manufacturing techniques and an increasingly available supply of powerful magnets, which are both beginning to have a positive impact on end-product costs.

Regardless of any cost differential, however, for many applications, slotless brushless DC motors will be the preferred choice to resolve specific requirement issues. While advances in electronics are beginning to be applied that promise to reduce normal cogging in slotted products as a step toward making these motors more smooth running and quiet, the industry is not there yet: slotless motors remain the best alternative where cogging and life are defining performance issues

This Tutorial and other Motion Control Tutorials are available through www.Servo2Go.com

For further information on this new product or others in our extensive product portfolio, call 1- 877-378-0240 or e-mail Warren Osak at warren@servo2go.comor visit Servo2Go.com at: www.Servo2Go.com

Servo2Go-Logo
Visit our Website
Twitter Link
Facebook Link

Motion Control – 6 New Servo Drives capable of 100A peak and 60A continuous output!

Motion Control Components - Electromate offers 6 new Servo Drives

 

Motion Control - Electromate-Logo

 

This new power range comes with a variety of network options including EtherCAT, CANopen, POWERLINK, Modbus and more … 

 

Vaughan, Ontario, Canada — Motion Control Components — This new power range comes with a variety of network options including EtherCAT, CANopen, POWERLINK, Modbus and more. Safe Torque Off (STO) functionality is included as a standard feature. Available now, these new models offer high efficiency in a compact design and are targeted towards AGVs and mobile applications

 

Specifications:

  • 100 A Peak Current Output
  • 60 A Continuous Current Output
  • 20 – 80 VDC Supply Voltage
  • Safe Torque Off (STO) standard
  • High Efficiency
  • Compact Design

 

Information on the 6 new servo drives from Advanced Motion Controls can be found at the links below:

DPCANIA-100B080 (CANopen)

DPCANIE-100B080 (CANopen)

DPEANIU-100B080 (EtherCAT)

DPMANIU-100B080 (Click&Move® Embedded)

DPPANIU-100B080 (POWERLINK / Modbus TCP / Ethernet)

DPRANIE-100B080 (Modbus RTU / RS485)

About Electromate:

Electromate’s Core Purpose is to help Manufacturers build better machines using differentiated automation technology. They specialize in Robotic and Mechatronic Solutions for the Industrial Automation marketplace. Respected by customers as a premiere source for High Performance Automation and Motion Control Components & Systems, Electromate® specializes in AC & DC Servo and Stepper Motors & Drives, Motion & Automation Controllers, Positioning Systems & Actuators, Feedback Devices, Gearing Products and HMI’s & Operator Displays, all supported via extensive product selection, just-in-timedelivery, dedicated customer service and technical engineering support.

More on Electromate can be found at

Website: http://www.electromate.com

LinkedIn: https://www.linkedin.com/company-beta/209277/

Twitter: https://twitter.com/Electromate

Facebook: https://www.facebook.com/electromateindustrial/

Google+: https://plus.google.com/104057418684128701566

Blog: https://electromate.wordpress.com/

To view Electromate’s new corporate video CLICK HERE

For further information on this new product or others in our extensive product portfolio, call 1-877-SERVO99 (737-8699) or e-mail Warren Osak at sales@electromate.com or visit Electromate at: www.electromate.com

 

Motion Control - Electromate-Logo
Visit our Website
Motion Control - Electromate Twitter Link
Motion Control - Electromate Facebook Link

The Engineering Edge – One Piece FDA Linear Bearings and ETX Scrapers!

Engineering Edge -FDA Bearings/Scrapers

 

Motion Control – The Engineering Edge -Our latest linear bearing innovation is our FDL-ETX one piece bearing. ETX (FDA) Scraper Seals are machined into our Fluidline Linear Bearing. Our customer, a manufacturer of packaging machinery for the pharmaceutical industry, required FDA and washdown compliance. Further, they could not allow debris to include between the bearing and the shaft. They had been offered a number of catalog options that were close but no cigar! After reviewing the application, we approached them with this truly innovation option and it was well received and specified. At LM76 we distill down to the “right” design – we don’t saddle you with a catalog option.

About LM76 and “The Engineering Edge”

Founded in 1976, LM76 has been a leading designer/manufacturer of linear bearings, slides and linear motion systems. LM76 is renowned for its industry leading Minuteman PTFE Composite linear bearings. LM76 is a leading supplier of precision linear shafting: RC60, 300 Series Stainless Steel, and ceramic-coated aluminum shafting. LM76 also offers several FDA/USDA compliant linear bearings and slides for the food processing, pharmaceutical, medical, and packaging industries.

When others think catalog …   … LM76 thinks solution!

For additional information contact Mike Quinn at: LM76, 140 Industrial Dr., E. Longmeadow, MA 01028; Telephone: 413-525-4166, Fax: 413-525-3735 or E-Mail: mquinn@lm76.com or visit the website at http://www.lm76.com

engineering edge directory link

LM76
Visit our Website
Order Our Catalog

Motion Control – Application – Maxon Motor’s Exoskeleton Joint Actuator!

Motion Control – Application – Reliable, Powerful, Efficient Actuators

 motion control application - Exoskeleton Drive

 

Motion Control - Maxon Logo

Fall River, MA — Motion Control – Components – Motion Control Application – Application – Maxon Motor developed an exoskeleton drive for use in robotic limbs. This complete joint actuation unit consists of a pancake brushless DC motor with inertia optimized rotor. Also included is an internal high resolution encoder, planetary gearhead with absolute encoder and a position controller with CAN and RS232 interface. Fitting absolute encoder directly at the joint rotation provides designers increased positioning accuracy.

The motion control miniature actuator unit delivers 54Nm of continuous torque and 120Nm on a 20% duty cycle and may be operated on supplies between 10 and 50V DC and the actuation speed is up to 22rpm. Other key features include: compact housing, integrated controller and reduced weight and cost. The ideal choice for use in Hip and Knee Exoskeletons.

Contact maxon for more details info@maxonmotorusa.com

Comprehensive documentation and software are included with every delivery, and are also available for you to download from our website at www.maxonmotor.com.

Maxon Logo
Visit our Website
Order Our Catalog

Linear Motion Tutorial – What is a Voice Coil Actuator?

Motion Control Tutorial –

Understanding the Basics of a Voice Coil Actuator

 

A voice coil actuator, also known as a non-commutated DC linear actuator, is a type of direct drive linear motor.  The name “voice coil” comes from one of its historically first applications: vibrating the paper cone of a loudspeaker.  They are currently used for a wide range of applications, including moving much larger masses.  It consists of a permanent magnetic field assembly (permanent magnets and ferrous steel) and a coil assembly.  The current flowing through the coil assembly interacts with the permanent magnetic field and generates a force vector perpendicular to the direction of the current.  The force vector can be reversed by changing the polarity of current flowing through the coil.

A non-commutated DC linear actuator, typically referred to as a voice coil, is capable of a displacement of up to 5 inches, whereas most actuators have displacements up to 2 inches.  Voice coils come in a range of sizes, from devices that generate a few ounces of force, to others that generate several hundred pounds of force.  In addition, voice coil actuators can move bi-directionally, have a constant force over the stroke, and can be used for either open loop applications or closed loop position or force applications.

A voice coil actuator generates a force based on an interaction of current carrying conductors in a permanent magnetic field.  The force generated by the voice coil is proportional to the cross product of the current flowing through the coil and the magnetic flux in the permanent magnetic field, as dictated by Lorentz’ force equation:

F = B x I

F= Force (lbs or N)
B = Flux density (Tesla)
I = Current (Amps)

The force generated is relatively constant throughout the stroke of the actuator, with minor decreases in force at the beginning and end of the stroke.

Either the coil assembly or permanent magnetic field assembly can be used as the moving member in a voice coil actuator.

Moving Coil

Voice coil actuators come in a variety of packages.  The standard type, which most people are familiar with are moving coil type actuators.  These typically involve a coil wound around a bobbin, which can be made from many non-magnetic materials, which moves in and out of a permanent magnetic field assembly consisting of a steel housing with a concentric permanent magnet assembly in the middle.  A typical example can be found below:

motion control tutorial

Moving Magnet

Another common type of actuator would be the moving magnet design, where the coil is fixed and magnet assembly moves.  This construction change would prevent moving leads during operation.  The package operates similarly, but instead of an exposed coil that moves in and out of the magnet assembly, the moving magnet style utilizes a permanent magnetic field assembly “piston” moving inside a cylindrical coil tube.  This style often comes with the permanent field assembly attached to a shaft, and end caps containing bearings so that this style is most commonly supplied with an integrated bearing system.  A typical example can be found below:

motion control tutorial linear motion actuator

There are variations on both common designs of either actuator design that allow for unique geometry, and the integration of voice coil actuators into several applications.

A few examples of customizations available are:

  • Large radial clearances so that the voice coil can be used in limited rotation applications
  • Designs that intentionally operate the voice coil motor in an arc (commonly referred to as a rotary voice coil actuator)
  • Using low outgassing materials to enable use in vacuum environments
  • Integration of feedback devices for closed loop control

Voice coil actuators are typically used in focusing applications, oscillatory systems, mirror tilting, and miniature position control.

Advantages of Voice Coil Actuators

  • Simplicity of construction
  • Very low hysteresis
  • Small size
  • High accelerations
  • No cogging or commutation

Typical Specifications for Voice Coil Actuators

Type Stroke Peak Force Diameter Power Consumption Frequency Range
Moving Coil 0.1 to 5.2 inches

0.1 to 134 mm

0.1 to 1755 lbs

0.1 to 7020 N

0.4 to 10 inches

10 to 254 mm

1 to 2700 watts 1 to 500 Hz
Moving Magnet 0.1 to 4 inches

0.1 to 101 mm

0.1 to 419 lbs

0.1 to 1865 N

0.4 to 6.5 inches

10 to 164 mm

1 to 3400 watts 1 to 500 Hz

 

H2W Technologies, Inc. is dedicated to the design and manufacture of linear and rotary motion products that are used in the motion control industry. The complete line of linear electric motors includes: Single and dual axis linear steppers, DC brush and brushless linear motors, voice coil actuators, and AC induction motors. Also offered is a complete line of ball screw, lead screw and belt driven positioning stages.

Other motion control products include: Limited angle torque motors for compact, limited angular excursion rotary servo applications, 3 phase brushless rotary servo motors with matching digital servo amplifiers and permanent magnet linear brakes for fail-safe, zero power braking for baggage handling and people moving applications as well as amusement park rides.

With over 75 years combined experience in the linear and rotary motion field, the H2W Technologies team of engineers offers the optimal solution to the most demanding motion control, requirements.

For additional information contact Mark Wilson at H2W Technologies, 26380 Ferry Ct, Santa Clarita,  CA 91350; Tel: 888-702-0540 FREE, Fax: 661-251-2067, E-Mail: info@h2wtech.comor visit the website at http://www.h2wtech.com

 

H2W Logo
Visit our Website
You Tube
Visit our Blog

Motion Control – Steinmeyer Tutorial – Ball Screws – Maximum Load!

Motion Control Components - Steinmeyer Cooled Ball Screws

 

Steinmeyer Logo

 

 

 

 

 

 

Tutorial presented by Steinmeyer – Their Ball Screws are specially manufactured for dynamic performance

BURLINGTON, MA –Motion Control Tutorial – Ball Screws – Maximum Load

There are five ways a ball screw may fail due to overload:

  • Excessive dynamic loading, which means the screw makes too many revolutions under a certain load resulting in material fatigue. This can be avoided by selecting a ball screw with sufficient dynamic load capacity (or by reducing the number of revolutions and/or reducing the load). This is the subject of the load capacity discussion.
  • Exceeding the static load capacity, which causes instant and permanent damage to the ball screw due to brinelling of balls and races, and prevents any further normal operation of the ball screw. Static load capacities are listed as technical data.
  • Buckling of the shaft under compressive load. Buckling load value depends on bearing method and free length of the loaded ball screw shaft.
  • Failure of the nut body or of the bolts that connect it to the slide. This may happen even before the static capacity is reached. Safe loads are discussed on the following pages.
  • Radial loads. It means the load capacities given in this catalogue apply only to pure axial loading. As there are always tolerances in the alignment of bearings and linear guideways, there may be a small amount of radial force, which should be minimized. Under normal conditions, a radial load less than 5% of the minimum axial load will not cause any problems. When considering a ball screw for use under radial load, please consult Steinmeyer engineers.

BUCKLING

There are several analytical ways to demonstrate safety from buckling. In machine design, the most frequently used is a simple calculation using formulas based on Euler equations.

Other, more accurate methods include non-linear FEM analysis and more involved mathematics. These methods are normally used in aerospace applications, where excess safety margins are not possible due to weight limitations. Please contact us if you require such an analysis.

Please CLICK HERE for a simple form of buckling analysis. Buckling

FRACTURE LOAD

Some ball screws cannot be loaded all the way to their static capacity. Screws with high dynamic load capacity (which might be selected to obtain a long enough service life at a much lighter load) will necessarily have a high static capacity. But the term “static capacity” is misleading, since the ball screw may actually fail due to fracture of the nut flange, nut body, or connecting bolts before reaching this load!

Please CLICK HERE for the maximum safe loads. Fracture Load

TECHNICAL TIP

A reasonable load for a ballscrew, which may be sustained for significant travel, is about 10% of its dynamic capacity.

A mean load of 10% of its dynamic capacity results in a theoretical life of 1 billion revolutions, which is the upper limit of the range where the life equation is valid. Mean loads of a reasonably sized ball screw will therefore be somewhat higher than this, but normally not exceed 20% of its dynamic capacity.

For short peak loads, the loading may be higher, but normally the loading of a ball nut with 2-point contact should not exceed 2.8 times the preload. And preload is around 5% – 10% of dynamic capacity.

As a rule of thumb, this all means the load range for a ball screw, to be used in a machine tool application, is really about 10% to 30% of its dynamic capacity. However Steinmeyer ball screws are used in many applications as force actuators where the loading is up to 100% of dynamic capacity but with low speed and acceleration. For example, they may be used to power injection molding machines, where high forces occur at reduced speed. Please consult our engineers for details.

Please CLICK HERE for information on Accounting for preload.

About Steinmeyer

Steinmeyer is the world’s longest continuously-operating manufacturer of commercial ball screws. In the realm of linear motion control, our company has become synonymous with precision, innovation, and exacting standards of quality.

Steinmeyer’s extensive product line is used widely in drive systems for industrial machines as well as precision positioning in optical instruments, medical devices, and other mechatronic applications. www.steinmeyer.com

For further information on Steinmeyer our extensive product portfolio, call 1-781-273-6220 or e-mail Rosmary Belt at rosmary.belt@steinmeyer.com or visit the Steinmeyer FMD group at: www.steinmeyer.com

 

Steinmeyer Logo
Visit our Website
Steinmeyer Motion Control Videos
Other Steinmeyer Motion Control Ball Screw Blog

Make Your Work Place Safe! Use the safety Gotcha Stick from STI!

 

STI — Omron introduces the safety Gotcha Stick Safe Distance Scale. This three-segment safe distance stick accurately tests the allowable barrier opening size based on the distance from the point of operation. It features English measurements on one side, and Metric measurements on the other.

Although not officially adopted by OSHA, the safety “Gotcha Stick” is based on data from “A Review of Machine-Guarding Recommendations,” by Donald R. Vaillancourt and Stover H. Snook of the Liberty Mutual Research Center for Health & Safety. This data redefines the dimensions of the human arm for the purposes of machine guarding. The resulting new stick has been modified to include openings of less than 1/4 inch over the first 1/2 inch distance.

Guarding machinery by means of hard (fixed) barriers is one of the main ways of protecting personnel from point-of-operation hazards. The safety “Gotcha Stick” is the easiest means of verifying that openings in hard guarding will not allow the point-of-operation to be accessed by the operator.

With headquarters in the heart of Silicon Valley, STI was founded nearly 30 years ago and employs more than 350 people. STI has been selected twice by Forbes and three times by Business Week as one of the “world’s best small companies.” STI’s safety products are used to protect workers around machinery, automated equipment and industrial robots. Their products serve a wide variety of applications and markets, including semiconductor, automotive, electronics manufacturing, packaging and consumer markets.

To request the safety “Gotcha Stick” click here.

Motion Control – High Performance Servo Gearbox is ideal for Cyclic or Continuous High Speed Applications!

Motion Control - Electromate offers GAM's Planetary Gearbox

 

Motion Control - Electromate-Logo

Motion Control Components – The SPH inline planetary gearbox available from Electromate is GAM’s latest solution for today’s demanding motion control challenges! 

Vaughan, Ontario, Canada — Motion Control Components — It is available in six frame sizes with nominal torque ratings from 15 to up to 900Nm. The SPH features precision cut helical gears that are ground for smoothness, quiet operation, and high accuracies. The face width of the SPH gears are up to 70% longer than the gears in comparable gearboxes on the market, which means more tooth contact and greater overall torque density. To carry the higher torques, SPH gears are case hardened which imparts strength deeper into the gear compared to nitriding which hardens just the surface. With several output configurations available, machine integration is simplified.

Motion Control - Electromate offers GAM's Planetary Gearbox

SPH Series Benefits

  • Helical Gearing
  • Lower backlashes
  • Lower noise levels
  • Smoother torque transmission.

CLICK HERE for additional information on the GAM SPG Gearbox

About Electromate:

Electromate’s Core Purpose is to help Manufacturers build better machines using differentiated automation technology. They specialize in Robotic and Mechatronic Solutions for the Industrial Automation marketplace. Respected by customers as a premiere source for High Performance Automation and Motion Control Components & Systems, Electromate® specializes in AC & DC Servo and Stepper Motors & Drives, Motion & Automation Controllers, Positioning Systems & Actuators, Feedback Devices, Gearing Products and HMI’s & Operator Displays, all supported via extensive product selection, just-in-timedelivery, dedicated customer service and technical engineering support.

More on Electromate can be found at

Website: http://www.electromate.com

LinkedIn: https://www.linkedin.com/company-beta/209277/

Twitter: https://twitter.com/Electromate

Facebook: https://www.facebook.com/electromateindustrial/

Google+: https://plus.google.com/104057418684128701566

Blog: https://electromate.wordpress.com/

Electromate Best Blace to Work

For more information on the “Best Place to Work”CLICK HERE!

To view Electromate’s new corporate video CLICK HERE

 

For further information on this new product or others in our extensive product portfolio, call 1-877-SERVO99 (737-8699) or e-mail Warren Osak at sales@electromate.com or visit Electromate at: www.electromate.com

Motion Control - Electromate-Logo
Visit our Website
Motion Control - Electromate Twitter Link
Motion Control - Electromate Facebook Link

Motion Control Application- Vacuum Compatible Maxon Motors for Extreme Conditions!

Maxon Motor spent several months working alongside Instrument Design Technology (IDT) to customize a small, brushless motor to perform in the extreme vacuum conditions of the synchrotron. This article highlights the challenges in the design.

motion control Application - Maxon Motor

Maxon Logo
Visit our Website
Order Our Catalog

 

Fall River, MA — Motion Control Components Application – The Diamond Light Source particle accelerator in Oxfordshire has been used for projects as diverse as analyzing the effects of strain on aircraft wings, studying the behavior of the HIV virus, and even reading ancient letters without opening them. The 45,000m2 synchrotron facility works by accelerating electrons to 3GeV, generating beams of synchrotron light, up to ten billion times brighter than the sun, in order to understand molecular structures. To prevent electrons being lost in collision with air molecules, the whole process is undertaken in a vacuum; around one billion times lower than atmospheric pressure. Clearly, creating scientific instrumentation for such conditions requires great specialist knowledge, and Widnes-based Instrument Design Technology (IDT) supplies the world’s leading synchrotron facilities.

Motion Control Application Maxon Motor for Synchrotron

Diamond specified that the Double Crystal Monochromator for its new X-Ray Spectroscopy Beamline B18 should drive the crucial Bragg rotational axis with a DC motor rather than the usual stepper motor. IDT managing director Paul Murray explains: “The goal was to achieve higher rotation speeds, with a lower motor temperature and smoother drivetrain than the stepper motor we had used previously. Stepper motors are inherently noisy, and often sources of vibration. Eliminating this issue would immediately improve results from the DCM – but the new motor would have to work flawlessly in a vacuum of 10-8 Torr.” To help solve the problem IDT enlisted the help of Paul Williams, senior sales engineer at maxon motor UK. With experienced engineers handling the project at every stage, and a long history of customizing high-performance motors for applications as demanding as space and surgical robotics, maxon’s teams in Britain and Switzerland were eager to rise to the challenge of creating a cutomized solution. Williams says: “Because the vacuum in the synchrotron must not be compromised, each individual aspect of the motor and its construction had to be analyzed for possible outgassing. The challenge for us was effectively to create a brushless motor with virtually no glues or plastics, an incredibly high temperature tolerance, and excellent performance.”

The starting point for the custom motor was maxon’s EC22 Heavy Duty Motor. Although originally developed for sub-sea oil applications, the 22mm brushless motor’s laser-welded stainless steel construction and broad temperature range already addressed many of the needs of high vacuum applications – and being a brushless DC motor meant it would immediately be more efficient, quiet and responsive than the previous stepper motor.

Maxon Motor for Application in Synchrotron

When customizing the EC22 HD for use in the synchrotron, maxon accounted for a number of factors. First among these was temperature management. Motors in a vacuum cannot dissipate heat through convection in the normal way, so can be prone to overheating. It is therefore important to choose a motor with high temperature tolerance, stay well within its rated performance in air, and, if possible, position other components in such a way as to spread heat by conduction. A high ratio gearbox was also vital. High vacuums of 10-7 Torr and greater can pull gaseous compounds from materials such as plastics and glues, compromising performance and contaminating the vacuum – a problem known as outgassing.

Each component in the motor was individually tested, and upgraded as necessary. For example, standard PVC cable coating was replaced with a more inert, Kapton version. It was therefore important that the EC22 HD was already substantially made from stainless steel, rather than plastics. Because of the potential for outgassing, the usual glues and epoxies could not be used, and the motor was put together using extensive micro laser welding. From its work with space and aerospace projects, maxon knew how standard, light greases used on motor bearings are affected in low pressure conditions. It was therefore important to specify an extremely inert lubricant which was also thick enough to avoid giving off vapor under high vacuum – and to account for the effect of this change on the motor’s operating characteristics and anticipated life cycle. To finally remove any remaining outgassing threat, motors for controlled vacuum conditions are baked at 120ºC for 24 hours. Already purpose-built for temperatures in excess of 200º C, the EC22 HD proved an ideal starting point.

The Double Crystal Monochromator, incorporating the special maxon DC motor, is now in active service in Diamond Light Source’s Beamline B18, playing its role in key experiments on a daily basis. As an example, a group of Italian scientists used Beamline B18 to study dust in snowflakes that fell some 800,000 years ago – about the time of the first hominid life on Earth. Ice cores drilled from the Antarctic are made up of layers of frozen snow, dating back hundreds of thousands of years… and minute dust particles trapped as the snow fell hold key information about the earth’s climate, atmosphere and volcanic activity at the time. Using X-Ray Absorption Spectroscopy, the scientists were able to study the mineral composition of the dust, determining its origin, and unlocking clues to the changes in global climate patterns over hundreds of millennia.

For infromation on the Maxom Motor EC22 HD CLICKHERE

Contact maxon for more details info@maxonmotorusa.com

Comprehensive documentation and software are included with every delivery, and are also available for you to download from our website at www.maxonmotor.com.

Motion Control – High Performance XY Stage with Linear Motors from Intellidrives!

Motion Control - Intellidrives Motion Control Component - HP XY Linear Motor Stage

 

Motion Control Components - Intellidrives-Logo

 

 

 

 

 

 

Philadelphia, PA, —

  • Motion Control YX Stages Feature:
  • Direct drive linear motors
  • Resolution 0.1 microns
  • Repeatability 0.25 microns
  • Absolute accuracy 5 microns
  • Max speed 1.5 m/sec
  • Max acceleration 1.5 G

ULTRA-PRECISION STAGE DESIGN – New IntelLiDrives XY stage design allows critical elements such as orthogonality, straightness, and flatness to be optimized, resulting in a stage with exceptional geometric tolerances. Direct-drive technology with core-less linear servo motor has no hysteresis or backlash, enabling accurate and repeatable nano-meter scale motions in both X and Y directions.

DIRECT DRIVE TECHNOLOGY – Non-contact direct-drive technology offers robust, accurate, and high-speed positioning necessary for mass production of precision devices. XY stage utilizes advanced direct-drive technology to achieve the highest level of positioning performance. Accurate Positioning is assured with contact-less linear encoder. The motor and encoders are directly coupled to eliminate backlash.

MULTI-AXES CONFIGURATIONS – This unique drive and bearing combination, packaged in a small-profile and footprint, offers tangible advantages in many applications such as high-precision positioning, disk-drive fabrication, fiber alignment, optical delay element actuation, sensor testing, and scanning processes that demand smooth and precise motion.

MATCHING INDEXERS and DRIVES

Intellidrives Motion Control Component - Indexers and Drives

 

 

 

 

 

 

 

 

 

 

 

Features:

  • Advanced sine wave commutation
  • Accurate torque control
  • Stand-alone or CAN distributed drive
  • Step/direction interface
  • Electronic gearing to master encoder
  • ± 10V velocity/current command
  • Auto-phasing and auto-tuning
  • 24-160VDC or 115/230VAC operation

FOR ADDITIONAL INFORMATION ON AC-POWERED, XTL/XSJ SERIES – CLICK HERE

FOR ADDITIONAL INFORMATION ON DC-POWERED, ADP SERIES – CLICK HERE

 

Configuration & easy-to-use tuning and control software

Intellidrives Motion Control Component - Indexers and Drivers Software

 

 

 

 

 

 

Torque control

Velocity control

Position control

PLC indexer or CANopen

EtherCAT

FOR ADDITIONAL INFORMATION – CLICK HERE

About IntelLiDrives —

IntelLiDrives, Inc. manufactures linear actuators, XY tables and rotary tables for the industry, government, science and research institutions around the world. Our precision rotary actuators, XY stages and linear actuators are used in the applications in medical devices, life sciences, semiconductor and electronic assembly manufacturing, data storage, laser processing, military/aerospace, photonics, automotive and test assembly, research and development and other industries requiring high precision and throughput motion control solutions.

For further information on this new product or others in our extensive product portfolio, call 1-215-728-6804 or e-mail Intellidrives at sales@intellidrives.com or go Intellidrive – Contact Us at: www.intellidrives.com/contact-us

Motion Control Components - Intellidrives-Logo
Visit our Website
Like us on Facebook
SUBSCRIBE TO LIST
FOWARD EMAIL